
Robot Movement

Paul A. Rubin

September 8, 2024

Problem
This document describes an integer programming model for a bicriterion routing problem posted on Oper-
ations Research Stack Exchange. The problem involves a robot moving through a rectangular grid, with
each move to an adjacent cell (up, down, left or right but not on a diagonal). The robot must visit each cell
at least once and return to the cell from which it started. In addition, each cell has a nonnegative priority
value (weight). There are two competing criteria to be minimized. One is to minimize the total time (or
equivalently the number of movements) required for the robot to make its rounds and return to base. The
other is to minimize weighted service delay, which is the sum over all cells of the time at which the cell is
first visited multiplied by its priority.

Parameters
C is the set of cells in the grid
c0 ∈ C is the origin (and eventual destination) of the robot
N(c), c ∈ C is the set of cells adjacent to cell c (i.e., the set of cells to which the robot could move when

leaving cell c)
wc ≥ 0, c ∈ C is the weight (priority) assigned to cell c
H ≫ |C| is the planning horizon (the maximum number of movements allowed in the model; see notes below)

Variables
xc,t ∈ {0, 1} , c ∈ C, t ∈ {1, . . . ,H} is 1 if and only if the robot is in cell c at time t

yc,t ∈ {0, 1} , c ∈ C, t ∈ {1, . . . ,H} is 1 if and only if the first visit to cell c occurs at time t

zt, t ∈ {1, . . . ,H} is 1 if and only if the robot returns to c0 for the last time (with all cells visited at least
once) at time t

Objectives

ℓ =
∑H

t=1 t · zt is the length of the route (the number of movements required for the robot to complete its
rounds) (technically, one more than the route length if you are being picky)

d =
∑

c∈C wc

(∑H
t=1 yc,t

)
is the weighted delay in servicing all cells

Constraints
• With apologies to Erwin Schrödinger, the robot can only be one place at each time.∑

c∈C

xc,t = 1 ∀t ∈ {1, . . . ,H}

1

https://or.stackexchange.com/questions/12451/coverage-path-planning-dilemma-trade-off

• The robot starts in cell c0.
xc0,1 = 1

• The robot ends where it began.
xc0,H = 1

• Every node must be visited at least once.

H∑
t=1

xc,t ≥ 1 ∀c ∈ C

• To reside in any node other than the origin, the robot must have come from a neighboring node.

xc,t ≤
∑

n∈N(c)

xn,t−1 ∀c ∈ C\ {c0} ,∀t ∈ {2, H}

• To reside at the origin, the robot must have come from a neighboring node or already been in the
origin.

xc0,t ≤ xc0,t−1 +
∑

n∈N(c0)

xn,t−1 ∀t ∈ {2, H}

• Every node has a unique first visit.
H∑
t=1

yc,t = 1 ∀c ∈ C

• To get credit for a first visit, the robot must actually be at the node.

yc,t ≤ xc,t ∀c ∈ C,∀t ∈ {1, . . . ,H}

• The robot must eventually be officially done.

H∑
t=1

zt = 1

• To be done, the robot must be at the origin.

zt ≤ xc0,t ∀t ∈ {1, . . . ,H}

• To be done, there can be no further visits outside the origin.

zt + xτ,c ≤ 1 ∀t ∈ {1, . . . ,H − 1} ,∀τ ∈ {t+ 1, . . . ,H} ,∀c ∈ C\ {c0}

Notes
There are some redundancies or trivial simplifications available. For instance, z1 = 0 since at time 1 the
robot has not yet visited any node other than the origin. The presolve operation of any decent solver will
remove these.
The final constraint (no further visits after the robot is done) could be rewritten as

zt +

H∑
τ=t+1

∑
c∈C\{c0}

xτ,c ∀t ∈ {1, . . . ,H − 1} .

It would reduce the number of constraints but make the constraint matrix denser, which is generally not
desirable when using contemporary solvers.

2

Combining the two objectives (both to be minimized) is left to the reader as an exercise. Possibilities include
minimizing one with an upper bound on the other (in which case selecting the bound is tricky), minimizing a
weighted combination of the two (in which case selecting weights is tricky), or using lexicographic minimizing
(minimizing the higher priority objective and then minimizing the lower priority objective subject to the
higher priority objective being bounded by its optimal value) (in which case the issue is choosing the higher
priority objective).
All parameters are given except the planning horizon H. Choosing it is a compromise between model size
and confidence in the optimal solution. Clearly some finite limit is required. Choosing too large a horizon
increases solution time (and at some point would cause the solver to run out of memory). Choosing too
small a horizon might result in an “optimal” solution that is actually suboptimal (because the truly optimal
solution needs more than H moves). A similar issue arises in other types of models, and it is often the case
that the presence of slack in the final solution (in this context, the robot returning to the origin before time
H and then staying there until time H) ensures that the true optimum has been found. In this case, that
might not hold: a suboptimal solution might contain slack because any improvement in the route would
lengthen it by more than the amount of slack. It is not clear here how much slack would be enough to ensure
optimality, but it is reasonable to say that the more slack is found in the solution, the more confidence one
can have in it.

3

